$$ \\ \\ $$
$$ \text{Take the curl of Faraday's Law and substitute in }\text{Amp}\grave{\mathrm{e}}\text{re-Maxwell Law:} $$
\[
\begin{aligned}
\nabla \times (\nabla \times \mathbf{E}) &= \nabla \times \left( -\frac{\partial \mathbf{B}}{\partial t} \right) \\
                                         &= -\frac{\partial}{\partial t} (\nabla \times \mathbf{B}) \\ 
                                         &= - \mu_0 \epsilon_0 \frac{{\partial}^2 \mathbf{E}}{{\partial t}^2} \\
\end{aligned}
\]

$$ \\ \\ $$
$$ \text{Use the vector calculus identity: } \nabla \times (\nabla \times \mathbf{F}) = \nabla (\nabla \cdot \mathbf{F}) - {\nabla}^2 \mathbf{F} $$
$$ \text{and substitute in Gauss's Law for Electric Fields:} $$
\[
\begin{aligned}
\nabla \times (\nabla \times \mathbf{E}) &= \nabla (\nabla \cdot \mathbf{E}) - {\nabla}^2 \mathbf{E} \\
                                         &= - {\nabla}^2 \mathbf{E} \\
\end{aligned}
\]
$$ \text{Now we have the ...} $$

$$ \\ \\ $$
$$ {\large \text{Electromagnetic Wave Equation}} $$
\[
\begin{aligned}
{\nabla}^2 \mathbf{E} &= \mu_0 \epsilon_0 \frac{{\partial}^2 \mathbf{E}}{{\partial t}^2} \\
{\nabla}^2 \mathbf{B} &= \mu_0 \epsilon_0 \frac{{\partial}^2 \mathbf{B}}{{\partial t}^2} \\
\end{aligned} \\
\]
$$ {\small \text{(Derivation of magnetic field wave equation parallels the steps above.)}} $$

$$ \\ \\ $$
\[
\begin{array}{ll}
\text{General Wave Equation Form: }\ c^2 {\nabla}^2 u = \frac{{\partial}^2 u}{{\partial t}^2} \\
\text{where c in the electromagnetic wave equation is:} \\
\end{array}
\]
\[
\begin{aligned}
c^2 &= \frac{1}{\mu_0 \epsilon_0} \\
c &= \frac{1}{\sqrt{\mu_0 \epsilon_0}} \\
c &= 2.99792 \times 10^8\ \text{m/s} \\
\end{aligned}
\]